
WWW.MEDSCI MONIT.COM

Review Article
Signature: Med Sci Monit, 2003; 9(5): RA116-121
PMID: 12761468

RA116

Sound therapy induced relaxation: down regulating
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Summary
The use of music as a means of inducing positive emotions and subsequent relaxation has
been studied extensively by researchers. A great deal of this research has centered on the use
of music as a means of reducing feelings of anxiety and stress as well as aiding in the relief of
numerous pathologies. The precise mechanism responsible for these mediated effects has
never been truly determined. In the current report we propose that nitric oxide (NO) is the
molecule chiefly responsible for these physiological and psychological relaxing effects.
Furthermore this molecules importance extends beyond the mechanistic, and is required for
the development of the very process that it mediates. Nitric oxide has been determined to aid
in the development of the auditory system and participate in cochlear blood flow. We show
that NO is additionally responsible for the induced exhibited physiological effects. We pro-
ceed to outline the precise neurochemical pathway leading to these effects. Furthermore we
explore the interrelationship between the varying emotion centers within the central nervous
system and explain how the introduction of music can mediate its effects via NO coupled to
these complex pathways.
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1. DEFINING STRESS

The term ‘stress’ as defined in the strict biological sense
is an event or stimulus that alters the existing homeosta-
sis within a given organism [1]. Some theorists now
refer to the ‘healthy state’ as one of stability in the face
of change. Multiple causes of stress add to what is called
‘allostatic loading’,  which can be pathologic if not
relieved. The state may be cognitively appraised or non-
cognitively perceived. The disturbed organism may
either acutely or chronically experience this stimulus.
Indeed, the stressor (the stimulus) may even emerge
from within the organism itself, such as in interoceptive
psychiatric stress. Stress is difficult to define because
there are many types of stressors, or stimuli, that can
bring on this homeostatic perturbation. Through an
extremely complicated homeostatic process, all living
organisms maintain their survival in the face of both
external and internal ‘stressors’ [2,3].

Stress when defined as a psychological phenomenon is
characterized by feelings of apprehension, nervousness
and helplessness, and is commonly present in patients
undergoing medical procedures. Past research demon-
strates that stress induces numerous types of physiological
complications. Stress has been found to cause hyperten-
sion, tachycardia and hyperventilation [4], all of which
were shown to be linked with ischemia and can cause fluc-
tuations in body temperature, urinary urgency, enlarged
pupils, and loss of appetite [5]. Furthermore it has been
demonstrated that stress leads to increased cortisol levels,
depressing the immune system. Lastly, conditions that
arouse stress may actually increase pain [6]. An over-
whelming amount of research has been conducted into
methods of alleviating the stress response, as well as explo-
ring possible mechanisms by which these methods act.

2. STRESS AND ITS RELATION TO MUSIC

The use of music has consistently been found to reduce
stress levels of patients in clinical settings. Mulooly et al.
[6] investigated the use of music for postoperative stress
and found that patients who underwent an abdominal
hysterectomy reported lower stress levels after listening
to music when compared to patients who were not
exposed to this treatment. Studies [7] have contrasted
music to verbal distraction, concluding that although
the methods were comparable for the reduction of
stress, music was more effective in the reduction of
blood pressure. Further studies find [8] that adult
patients that listened to music during dialysis were
found to have significantly lower blood pressure after
their treatment than before. In further studies the effec-
tiveness of music in the reduction of stress has been
measured in myocardial infarction patients [8], and in
coronary care units [9]. Music has been paired with
other therapeutic techniques to reduce stress as well. In
a study of pediatric patients, group music therapy ses-
sions, including singing, and instrument playing, were
found to decrease observed stress in children before
surgery [5]. Guided imagery and music together were
found to decrease pain and stress in patients undergo-
ing elective colorectal surgery [4].

3. HOW EMOTIONS CAUSE STRESS AND HOW MUSIC
ALLEVIATES IT: CNS PROCESSES

Music and its calming effects have been demonstrated to
have a large emotional component. When pleasant
music is heard the brains motivation and reward path-
ways are reinforced with positive emotion mentally
linked to the music. This emotionalized memory
includes many ‘somatic markers’, i.e, bodily sensations
that accompany emotion and set the feeling tone’, feels
right’ to the person [10]. Clearly, music and the emo-
tion it imparts can be viewed as a process of reinforcing
a positive belief so that rational thought can not hinder
the strength of the belief (see [11,12]). Indeed, belief in
regard to a therapy and/or doctor and/or personal reli-
gion, may in fact stimulate physiological processes,
enhancing naturally occurring health processes by aug-
menting their level of performance. Conversely, emo-
tional stresses such as fear and anxiety can induce car-
diovascular alterations, such as cardiac arrhythmias
[13–15]. These cardiovascular events can be initiated at
the level of the cerebral cortex and may involve insular
as well as cingulated, amygdalar and hypothalamic
processes. Clinically we may see this as elevated cortisol
levels and in some instances can induce sudden death in
patients with significant coronary artery disease [16]. In
addition, heart rate is often altered under stressful con-
ditions. Neurons in the insular cortex, the central nucle-
us of the amygdala, and the lateral hypothalamus,
owing to their role in the integration of emotional and
ambient sensory input, may be involved in the emotion-
al link to the cardiovascular phenomenon. These
include changes in cardiac autonomic tone with a shift
from the cardioprotective effects of parasympathetic
predominance to massive cardiac sympathetic activation
[13]. This autonomic component, carried out with
parasympathetic and sympathetic preganglionic cells via
subcortical nuclei from which descending central auto-
nomic pathways arise, may therefore be a major path-
way in how belief may affect cardiovascular function.
The importance of music and the elicited emotional
response (and therefore limbic activation) was further
demonstrated in ischemic heart disease when patients
with frequent and severe ventricular ectopic rhythms
were subjected to psychological stress [13]. The frequen-
cy and severity of ventricular ectopic beats increased
dramatically during emotional activation of sympathetic
mechanisms but not during reflexively-induced increas-
ed sympathetic tone.

The hard-wiring of emotion/music and cardiovascular
neural systems probably involves many subcortical
descending projections from the forebrain and hypo-
thalamus [17–22]. Cardiovascular changes were ob-
served in experiments where the motor cortex surface
was stimulated, eliciting tachycardia accompanied by
and independent of changes in arterial blood pressure
[23]. The ‘sigmoid’ cortex [23,24], frontal lobe [25–27],
especially the medial agranular region [28], subcallosal
gyrus [29], septal area [30,31], temporal lobe [32], and
cingulate gyrus [32–34] appear to be involved. The
insular cortex in cardiac regulation is important because
of its high connectivity with the limbic system, suggest-
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ing that the insula is involved in cardiac rate and
rhythm regulation under emotional stress [35–38].

The amygdala, with respect to autonomic-emotional
integration [39,40], is composed of numerous subnuclei,
which the play a major role in the elaboration of auto-
nomic responses [41]. There are profuse inputs to this
region from the insular and orbitofrontal cortices, the
parabrachial nucleus, and the nucleus tractus solitarius
[42–44]. Amygdalo-tegmental projections are viewed as
a critical link in cerebral cortical control of autonomic
function [45,46].

The medial hypothalamus is also implicated in cardiac
arrhythmogenesis [47]. Beattie and colleagues [47] sug-
gested that hypothalamic projections that descended
into the midbrain periaqueductal gray matter, reticular
formation, and intermediolateral nucleus of the spinal
cord mediate the response. Magoun and colleagues [48]
demonstrated that the lateral hypothalamus and wide
areas of the lateral tegmentum are also important for
autonomic function. The lateral hypothalamus has long
been recognized for its role in the regulation of motiva-
tion and emotion and the autonomic concomitants of
related behaviors [49]. The densest cortical projection to
the lateral hypothalamus arises from the infralimbic cor-
tex [50]. Pressor sites within the insular cortex project
more heavily to the lateral hypothalamus than do
depressor sites and are represented at caudal levels.

Anatomical studies of the lateral hypothalamus demon-
strate projections to the periaqueductal gray matter, the
parabrachial region, parvicellular formation, dorsal
vagal complex, and spinal cord [51,52]. Furthermore,
descending projections of the lateral hypothalamus ter-
minate as a capsule around the dorsal motor nucleus of
the vagus nerve, which provides secretomotor fibers to
the stomach wall, pancreas, and small intestine. These
neural patterns might account for the close association
of cardiac and gastric responses.

4. NITRIC OXIDE

The very origin of music as a method of stress release
has its roots in the early development of the auditory
system. In a study by Fessenden and Schacht [53], it was
found that the nitric oxide (NO)/cGMP pathway is thor-
oughly involved in the development and function of the
sensory systems, and specifically in the development of
the cochlea. Thus NO is involved in the stimulated
relaxation from the very development of the organism,
to the mechanism by which the relaxation occurs [54].
Cochlear nerve fibers enter the brainstem and are rout-
ed through the thalamus to the auditory cortex. It has
been demonstrated that it is along this path that the
emotion centers within the limbic system are activated
(as depicted in Figure 1. the sensation of music enters
the diagrammatic neuronal pathway at the limbic sys-
tem) [55–57]. Furthermore this neuronal pathway from
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Figure 1. Representative connections among the
limbic–hypothalamic pituitary adrenal axis,
demonstrating that these centers are linked to 
vascular tone regulation. This pathway suggests
how emotional response of music may exert a
level of top-down control on vasomotor activity
and circulatory tone. The illustration is not meant
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auditory nerve to cortex was found to be mediated by
NO [58].

When we examine NO signaling, we notice two compo-
nents the constitutive NO synthase (cNOS) endothelial
(e) and neuronal (n) isoforms; see [59]. Constitutive
NOS (cNOS), as the name implies, is always expressed.
When cNOS is stimulated, NO release occurs for a short
period of time, but this level of NO can exert profound
physiological actions for a longer period of time [59].
NO is not only an immune, vascular and neural signal-
ing molecule, it is also antibacterial [60,61], antiviral
[60,61] and it down-regulates endothelial and immuno-
cyte activation and adherence, thus performing vital
physiological activities, including vasodilation [59]. Thus
NO release subsequent to music listening, has the
potential to protect an organism from microbes and
physiologic disorders such as hypertension, and also
diminishes excessive immune and endothelial activation
ocuring largely because of vasodilation modulated by
NO [59].

The endocannabinoids, anandamide and 2-arachidonyl
glycerol, are naturally occurring cNOS-derived NO-
stimulating signaling molecules that are also constitu-
tively expressed [62]. Anandamide, an endogenous
endocannabinoid, can also cause NO release from
human immune cells, neural tissues and human vascu-
lar endothelial cells [63]. Anandamide can also initiate
invertebrate immune cell cNOS-derived NO [64].
Estrogen can also stimulate cNOS-derived NO in
human immune and vascular cells [63, 65]. We believe
that each signaling system performs this common func-
tion under different circumstances. Morphine, another
naturally occurring animal signal molecule [66], given
its long latency before increases in its levels are detect-
ed, arises after trauma/inflammation and, through a NO
mechanism, down regulates these processes in neural
and immune tissues [67]. Anandamide, as part of the
ubiquitous arachidonate and eicosanoid signaling cas-
cade, serves to maintain and augment tonal NO in vas-
cular tissues [59]. Estrogen, through NO release, pro-
vides an additional pathway by which the system can
down-regulate immunocyte and vascular function in
women [63]. This may be due to both the immune and
vascular trauma associated with cyclic reproductive
activities, such as endometrial buildup, when a high
degree of vascular and immune activities are occurring.
Given the extent of proliferative growth capacity during
peak estrogen levels in this cycle, NO may function to
enhance down-regulation of the immune system to
allow for these changes. Clearly, therefore, enhanced
cNOS activity would be a beneficial effect within the
concept and time framework of music and the subse-
quent relaxation it induces. Thus, these signal mole-
cules, especially endocannabinoid and opiate alkaloids
[68] have the potential to make you ‘feel’ good and
relax [69], also release NO, which may be a vital part of
this complicated process.

5. SIGNALING MOLECULES LEADING TO RELAXATION

As noted above, once individuals undergo a very mild
form of work/activity such as music listening, they expe-
rience peripheral vasodilation, warming of the skin, a
decrease in heart rate and an overwhelming sense of
well-being [7,69].

In examining a potential mechanism for the music
induced relaxation, besides the over-riding central ner-
vous system output via the autonomic nervous system,
peripheral neuro-vascular processes would appear to be
important. We surmise NO to be of fundamental impor-
tance in this response because of the increase in periph-
eral temperature, i.e, vasodilation [70]. For a complete
review of possible related mechanisms see [59,71–73].

We also surmise, based on current studies, that
endothelial derived NO, released through normal pul-
sations, due to vascular dynamics responding to heart
beat [59] as well as ACh stimulated endothelial NO
release, may contribute to the effect of NO in inducing
smooth muscle relaxation [74]. Furthermore, vascular
pulsations may be of sufficient strength to also stimulate
nNOS derived NO release, limiting any basal NE
actions [74]. Interestingly, nitrosative stress, mediated
by involvement of the reactive nitrogen oxide species,
N2O3 does inhibit dopamine hydroxylase, inhibiting
NE synthesis and contributing to the regulation of neu-
rotransmission and vasodilation [75].This system may
provide an autoregulatory mechanism involved in the
neuronal control of peripheral vasomotor responses.

6. CONCLUSION

In summary, the music induced relaxation peripherally
appears to be mediated by a system of regulation involv-
ing NO, as neurotransmitter and as a locally acting hor-
mone. Contingent on the preliminary vasoconstriction
and depolarization of the membrane, vasodilation is
mediated by NO liberated from vasodilator nerves that
activate guanylate cyclase in smooth muscle and pro-
duce cGMP. During this stage, NO and NE exist simul-
taneously. Due to the characteristics of NO, NE no
longer mediates vasoconstriction; instead NO activates
guanylate cyclase, which produces vasodilation and the
relaxation under a depolarized membrane state (see
[30,54,76]).

In conclusion, the above findings demonstrate that
music has numerous profound effects [4–6,68, see also
[77] for social effects] we believe that this occurs via NO,
opiate and the above mentioned hormonal system.
Furthermore NO has been shown to be a necessary mol-
ecule in the development of the auditory system [53],
which is required to enable music to act as a relaxant.
Taken together we believe that the complex nitric oxide
signaling system is the primary and fundamental (from
development to mechanism) method by which music
acts as a relaxation device.
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